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ABSTRACT 

The objective of this paper is to analyze the application of the quarter-sweep iterative 

concept on Quadrature-Difference schemes namely central difference (CD)-composite 

trapezoidal (CT) with the Gauss-Seidel iterative method to solve second order linear 

Fredholm integro-differential equations. The formulation and implementation of the Full-, 

Half- and Quarter-Sweep Gauss-Seidel methods namely FSGS, HSGS and QSGS are 

presented for performance comparison. Furthermore, computational complexity and 

percentage reduction calculations are also presented with several numerical simulations. 

The numerical results show that the proposed QSGS method with the corresponding 

discretization schemes is superior compared to the FSGS and HSGS methods.   
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scheme.  
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1. INTRODUCTION 

  Consider the linear second order Fredholm integro-differential 

equations  
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subject to the two-point boundary conditions   

 

  00 yy  ,   11 yy  , 

 

where ,ia 0,1, 2.i       2, 0,1 0,1 ,K x t L     2 0,1P x L  and  

   2 0,1g x L  are given functions and  y x  is the unknown function to be 

determined (Lakestani et al. (2006)). The conditions for existence and 

uniqueness of solution of such problems have been investigated by Agarwal 

(1983, 1986). 

 

 Solutions of linear Fredholm integro-differential equations (LFIDEs) 

have been studied by many authors. Many studies have been carried out with 

Quadrature schemes by Zhao and Corless (2006), Aruchunan and Sulaiman 

(2010, 2011a, 2011b, 2013a, 2013b). Besides that, methods such as wavelet-

Galerkin (El-Sayed and Abdel-Aziz (2003)), Adomian’s (Deeba et al. 

(2000)), Tau (Hosseini and Shahmorad (2003, 2005)) and Sinc collocation 

(Rishidinia and Zarebinia (2005)) are also analysed in solving LFIDEs. 

However, these methods are lead to dense linear systems and can be 

prohibitively expensive to solve n -th order linear systems. Moreover, these 

methods are based on the standard or full-sweep iterative methods which are 

more expensive in terms of computation time. Therefore, in this paper, a 

discretization scheme namely quarter-sweep central difference-composite 

trapezoidal (QSCD-QSCT) scheme is applied to discretize Eq. (1) to generate 

a system of linear equations.  

 

The remaining of this paper is as follows. In Section 2, explanation 

of the full-, half- and quarter-sweep iteration concepts and the details of the 

formulation of QSCD-QSCT discretization schemes are elaborated with 

approximation equations. In Section 3, formulations of the FSGS, HSGS and 

QSGS iterative methods are shown with the development of a numerical 

algorithm. In Section 4, several numerical tests are conducted to validate the 
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efficiency of the methods. Furthermore, analysis on computational 

complexity is given in Section 5 followed by conclusion in Section 6. 

 

 

2. COMPLEXITY REDUCTION APPROCHES 

Basically, the proposed HSGS method is inspired by the concept of 

half-sweep iteration which as introduced by Abdullah (1991) via the Explicit 

Decoupled Group (EDG) iterative method to solve two-dimensional Poisson 

equations. The applications of half-sweep iterative methods have been 

implemented by Sulaiman et al. (2004a), Muthuvalu and Sulaiman (2008) 

and Aruchunan and Sulaiman (2012a, 2012b). Othman and Abdullah (2000) 

extended the concept of half-sweep iteration by establishing the quarter-

sweep iteration concept via the Modified Explicit Group (MEG) method to 

solve two-dimensional Poisson equations. Further studies to verify the 

effectiveness of the quarter-sweep iteration concept have also been carried 

out by Sulaiman et al. (2004b) and Akhir et al. (2012). The quarter-sweep 

iteration inherits the characteristic of the half-sweep iteration in which its 

implementation process will only consider nearly quarter of all interior nodes 

of the solution domain. Figure 1(a), 1(b) and 1(b) show full-, half- and 

quarter-sweep iteration concepts.  
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(b) 

 

 

 

 
(c) 

 

 
Figure 1: a), b) and c) show distribution of uniform node points for the full-, half- and quarter-

sweep cases respectively. 
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Based on Fig. 1, the full-, half- and quarter-sweep iterative methods will 

compute approximate values only at the solid nodes  until the convergence 

criterion is reached. Then, approximate solutions at the remaining points 

nodes (nodes of type       and   ) can be calculated using the direct method 

as given in Sulaiman et al. (2009). 

 

2.1  Formulation of Quarter-Sweep Quadrature-Difference Schemes 

 

In this section, central difference (CD) and composite trapezoidal (CT) 

discretization schemes will be reformulated by applying the full-, half- and 

quarter-sweep iteration concept in order to discretize the differential and 

integral terms in Eq. (1) to form the approximation equations. The full-, half- 

and quarter-sweep CD and CT formula can be written as follows 
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in which jt ),,2,( pnppj    are the abscissas of the partition points of 

the integration interval  ba,  or quadrature (interpolation) nodes; 

jA ),,2,1,0( nj  are numerical coefficients that do not depend on the 

function )(ty ; h  is the constant step length between the node points as 

defined below 
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where a  and b  is the lower and upper limit of the integral term in Eq. (1) 

and n  is the number of subinterval in  ba, ;  2)( phO  and )(yn  are the 

truncation errors of  Eqs. (2) and (3) which are not considered in the 

calculations. Meanwhile, the value of p  (1, 2 and 4) corresponds 

respectively to the full- half- and quarter-sweep iterative methods. 

 

By substituting Eqs. (2) and (3) into Eq. (1), a system of linear 

algebraic equations are obtained for the approximation values of )(xy  at the 

nodes 121 ,, nxxx  . Therefore, the full- half- and quarter-sweep iteration 

concepts, together with the CD and CT approximation schemes, yield 
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for pnppi  ,2, , 

 

where, 2,1p and 4 are respectively for the full-, half- and quarter-sweep 

approach. 

 

The linear system generated either by the full-, half- and quarter-

sweep approximation equation can be expressed by  
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obviously, E  is a dense coefficient matrix. From Equation (5), it is noticeable 

that applications of the half- and quarter-sweep iteration concepts reduce the 

coefficient matrix, E  from order  1n  to 







1

2

n
 and 








1

4

n
 respectively. 

 

 

3. FORMULATION OF FAMILY OF GAUSS-SEIDEL 

ITERATIVE METHODS 

The standard GS iterative method is also called the Full-Sweep 

Gauss-Seidel (FSGS) method. Combinations of the GS method with half- and 

quarter-sweep iterations are known as Half-Sweep Gauss-Seidel (HSGS) and 

Quarter-Sweep Gauss-Seidel (QSGS) methods respectively (Aruchunan and 

Sulaiman (2011b)). As mentioned above, the generated linear systems of Eq. 

(1) as simplified in Eq. (5) will be solved by using the FSGS, HSGS and 

QSGS iterative methods. Let the coefficient matrix, E , be decomposed into 
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ULDE                                          (6) 

 

where D , L  and U  are diagonal, strictly lower triangular and strictly 

upper triangular matrices respectively. Therefore, the general scheme for the 

FSGS, HSGS and QSGS iterative methods can be written as 
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As a matter of fact, the iterative methods attempt to find a solution to 

the system of linear equations by repeatedly were solving the linear system 

using approximations to the vector
~

y for solving Eq. (1). Iterations for FSGS, 

HSGS and QSGS methods continue until the solution is within a 

predetermined acceptable loop on the error. By determining the values of 

matrices D , L  and U  as stated in Equation (6), the general algorithm 

solving Eq. (1) using the FSGS, HSGS and QSGS iterative methods and the 

Gauss-Seidel method, is as follows   

 

Full-, Half- and Quarter-sweep Gauss-Seidel Algorithm  

Step 1 : Initialize all the parameters. Set et 0k . 

 

Step 2 : for pnpnppi  ,2,,2,   , Compute 
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Step 3 : Check the convergence 

If the error, 
10)(

~

)1(

~

10
 

k

i

k

i

yy , is satisfied, iteration is 

terminated and go to Step 4; otherwise, repeat the iteration sequence 

(i.e., go to Step 2) 

 

Step 4 : Stop. 
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4. NUMERICAL EXPERIMENT 

In this section, two well-posed problems are carried out to validate 

the effectiveness of the proposed method. Three parameters such as number 

of iterations, execution time and maximum absolute error are considered as 

measurements to evaluate the performance of the methods. The FSGS 

method was used as the control of comparison of numerical results. 

Throughout the numerical simulations, the convergence test was carried out 

with tolerance error of 1010 with several mesh sizes such as 60, 120, 240, 

480 and 960. The results of numerical simulations, which were obtained from 

implementations of the FSGS, HSGS and QSGS iterative methods for 

problems 1 and 2 are shown recorded in Tables 1 and 2 respectively. The 

percentage reduction of number of iterations and execution time for the 

HSGS and QSGS methods relative to the FSGS method is summarized in 

Table 3. 

  

Problem 1 (Delves and Mohammed (1985))  

Consider the second order linear FIDE 
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0
)()(602)(" dttytxxxy ,  10  x                      (8) 

 

with two point boundary conditions,       

 

0)0( y  and 0)1( y . 

The exact solution is 

xxy )( . 

 

Problems 2 (Amaal and Sudad (2010)) 

Consider the second order linear FIDE 
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with two point boundary conditions,    

 

1)0( y  and  ey )1(  

The exact solution is 
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TABLE 1: Comparison of a number of iterations, execution time (seconds) and maximum 

absolute error for the iterative methods (Example 1) 

 
 Number of iterations 

Methods 
Mesh Sizes 

60 120 240 480 960 

FSGS 3251 12278 45129 162727 576449 

HSGS 813 3251 12278 45129 162727 

QSGS 198 813 3251 12278 45129 

 Execution time (seconds) 

Methods 
Mesh Sizes 

60 120 240 480 960 

FSGS 0.80 4.53 45.50 543.06 7929.97 

HSGS 0.37 0.82 4.59 46.82 566.91 

QSGS 0.17 0.38 0.81 4.55 45.68 

 Maximum absolute error 

Methods 
Mesh Sizes 

60 120 240 480 960 

FSGS 7.449E-5 1.854E-5 4.332E-6 4.910E-6 5.248E-6 

HSGS 5.158E-4 1.338E-4 3.408E-5 8.604E-6 2.168E-6 

QSGS 1.915E-3 5.158E-4 1.338E-4 3.408E-5 8.604E-6 

 
 

TABLE 2: Comparison of a number of iterations, execution time (seconds) and maximum 

absolute error for the iterative methods (Example 2) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 Number of iterations 

Methods 
Mesh Sizes 

60 120 240 480 960 

FSGS 6064 22378 82010 298074 1072531 

HSGS 1633 6064 22378 82010 298074 

QSGS 437 1633 6064 22378 82010 

 Execution time (seconds) 

Methods 
Mesh Sizes 

60 120 240 480 960 

FSGS 1.36 20.77 139.62 2033.81 25780.26 

HSGS 0.56 2.18 15.05 144.70 2096.01 

QSGS 0.34 0.62 2.22 15.73 146.66 

 Maximum absolute error 

Methods 
Mesh Sizes 

60 120 240 480 960 

FSGS 9.684E-6 2.547E-6 1.142E-6 2.308E-6 8.668E-6 

HSGS 3.688E-4 9.329E-5 2.345E-5 5.878E-6 2.308E-6 

QSGS 2.841E-3 1.200E-3 5.462E-4 2.597E-5 1.260E-5 
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TABLE 3: Reduction percentage of the number of iterations and execution time for the HSGS 

and QSGS methods compared with FSGS method  
 

 

 

5. COMPUTATIONAL COMPLEXITY ANALYSIS 

 The computational complexity of the FSGS, HSGS and QSGS 

iterative methods is measured based on the estimation amount of the 

computational work of arithmetic operations performed per iteration. Based 

on the full-, half- and quarter-sweep Gauss-Seidel Algorithm, it can be 

observed that there are  1
p

n
 additions/subtractions (ADD/SUB) and 1

p

n
 

multiplications/divisions (MUL/DIV) in computing a value for each node 

point in the solution domain. From the order of the coefficient matrix, E  in 

Equation (5), the total number of arithmetic operations per iteration for the 

FSGS, HSGS and QSGS iterative methods has been summarized in Table 4. 
 

 
TABLE 4: Total number of arithmetic operations per iteration for  

FSGS, HSGS and QSGS methods  
 

Methods 
Arithmetic Operation 

ADD/SUB MUL/DIV 

FSGS 
2)1( n  12 n  

HSGS 

2

1
2











n
 1

4

2


n

 

QSGS 

2

1
4











n
 1

16

2


n

 

 

Methods 
Example 1 

Number of iterations Execution time 

HSGS 71.77-74.99% 53.75-92.85% 

QSGS 92.17-93.91% 78.75-99.42% 

Methods 
Example 2 

Number of iterations Execution time 

HSGS 72.21-73.07% 58.82-92.89% 

QSGS 92.35-92.79% 75.00-99.43% 
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6. CONCLUSION 

In this paper, application of the quarter-sweep iteration concept on 

numerical schemes namely CD and CT with GS iterative method for solving 

dense nonsymmetric matrix equations arising from the second order integro-

differential equations is examined. Through numerical solutions obtained in 

Tables 1 and 2, it evidently shows that applications of the half- and quarter-

sweep iteration concept reduce the number of iterations and computational 

time significantly. Based on Table 3, the percentage reduction in number of 

iterations for half- and quarter-sweep concept are approximately 72% and 

92% respectively, while the computational time reduces approximately 54% 

and 75% respectively compared to FSGS. Overall, the numerical results show 

that the QSGS method is a better method compared to the FSGS and HSGS 

methods in terms of number of the iterations and execution time. This is 

mainly due to the reduction in terms of computational complexity; since the 

QSGS method will only consider approximately quarter of all interior node 

points in solution domain during the iteration process (refer Table 4). 
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